Showing posts with label Wimax. Show all posts
Showing posts with label Wimax. Show all posts

Thursday, May 31, 2012

WiMax -Competing Techonologies

Competing technologies

Within the marketplace, WiMAX's main competition came from existing, widely deployed wireless systems such as Universal Mobile Telecommunications System (UMTS), CDMA2000, existing Wi-Fi and mesh networking.

In the future, competition will be from the evolution of the major cellular standards to so-called 4G, high-bandwidth, low-latency, all-IP networks with voice services built on top. The worldwide move to 4G for GSM/UMTS and AMPS/TIA (including CDMA2000) is the 3GPP Long Term Evolution (LTE) effort.
The LTE Standard was finalized in December 2008, with the first commercial deployment of LTE carried out by TeliaSonera in Oslo and Stockholm in December, 2009. Since then, LTE has seen increasing adoption by mobile carriers around the world.
In some areas of the world, the wide availability of UMTS and a general desire for standardization has meant spectrum has not been allocated for WiMAX: in July 2005, the EU-wide frequency allocation for WiMAX was blocked.

Harmonization

Early WirelessMAN standards, the European standard HiperMAN and Korean standard WiBro were harmonized as part of WiMAX and are no longer seen as competition but as complementary. All networks now being deployed in South Korea, the home of the WiBro standard, are now WiMAX.

WiMax Associations

Associations

WiMAX Forum

The WiMAX Forum is a non profit organization formed to promote the adoption of WiMAX compatible products and services.
A major role for the organization is to certify the interoperability of WiMAX products. Those that pass conformance and interoperability testing achieve the "WiMAX Forum Certified" designation, and can display this mark on their products and marketing materials. Some vendors claim that their equipment is "WiMAX-ready", "WiMAX-compliant", or "pre-WiMAX", if they are not officially WiMAX Forum Certified.
Another role of the WiMAX Forum is to promote the spread of knowledge about WiMAX. In order to do so, it has a certified training program that is currently offered in English and French. It also offers a series of member events and endorses some industry events.

WiMAX Spectrum Owners Alliance

WiSOA was the first global organization composed exclusively of owners of WiMAX spectrum with plans to deploy WiMAX technology in those bands. WiSOA focussed on the regulation, commercialisation, and deployment of WiMAX spectrum in the 2.3–2.5 GHz and the 3.4–3.5 GHz ranges. WiSOA merged with the Wireless Broadband Alliance in April 2008.

Telecommunications Industry Association

In 2011, the Telecommunications Industry Association released three technical standards (TIA-1164, TIA-1143, and TIA-1140) that cover the air interface and core networking aspects of Wi-Max High-Rate Packet Data (HRPD) systems using a Mobile Station/Access Terminal (MS/AT) with a single transmitter.[30]

WiMax - Integration with an IP-based network

Integration with an IP-based network

The WiMAX Forum architecture
The WiMAX Forum has proposed an architecture that defines how a WiMAX network can be connected with an IP based core network, which is typically chosen by operators that serve as Internet Service Providers (ISP); Nevertheless the WiMAX BS provide seamless integration capabilities with other types of architectures as with packet switched Mobile Networks.
The WiMAX forum proposal defines a number of components, plus some of the interconnections (or reference points) between these, labeled R1 to R5 and R8:
  • SS/MS: the Subscriber Station/Mobile Station
  • ASN: the Access Service Network
  • BS: Base station, part of the ASN
  • ASN-GW: the ASN Gateway, part of the ASN
  • CSN: the Connectivity Service Network
  • HA: Home Agent, part of the CSN
  • AAA: Authentication, Authorization and Accounting Server, part of the CSN
  • NAP: a Network Access Provider
  • NSP: a Network Service Provider
It is important to note that the functional architecture can be designed into various hardware configurations rather than fixed configurations. For example, the architecture is flexible enough to allow remote/mobile stations of varying scale and functionality and Base Stations of varying size - e.g. femto, pico, and mini BS as well as macros.


WiMax Technical Info

Technical information

The IEEE 802.16 Standard

WiMAX is based upon IEEE Std 802.16e-2005, approved in December 2005. It is a supplement to the IEEE Std 802.16-2004,and so the actual standard is 802.16-2004 as amended by 802.16e-2005. Thus, these specifications need to be considered together.
IEEE 802.16e-2005 improves upon IEEE 802.16-2004 by:
  • Adding support for mobility (soft and hard handover between base stations). This is seen as one of the most important aspects of 802.16e-2005, and is the very basis of Mobile WiMAX.
  • Scaling of the Fast Fourier transform (FFT) to the channel bandwidth in order to keep the carrier spacing constant across different channel bandwidths (typically 1.25 MHz, 5 MHz, 10 MHz or 20 MHz). Constant carrier spacing results in a higher spectrum efficiency in wide channels, and a cost reduction in narrow channels. Also known as Scalable OFDMA (SOFDMA). Other bands not multiples of 1.25 MHz are defined in the standard, but because the allowed FFT subcarrier numbers are only 128, 512, 1024 and 2048, other frequency bands will not have exactly the same carrier spacing, which might not be optimal for implementations. Carrier spacing is 10.94 kHz.
  • Advanced antenna diversity schemes, and hybrid automatic repeat-request (HARQ)
  • Adaptive Antenna Systems (AAS) and MIMO technology
  • Denser sub-channelization, thereby improving indoor penetration
  • Introducing Turbo Coding and Low-Density Parity Check (LDPC)
  • Introducing downlink sub-channelization, allowing administrators to trade coverage for capacity or vice versa
  • Adding an extra QoS class for VoIP applications.
SOFDMA (used in 802.16e-2005) and OFDM256 (802.16d) are not compatible thus equipment will have to be replaced if an operator is to move to the later standard (e.g., Fixed WiMAX to Mobile WiMAX).

Physical layer

The original version of the standard on which WiMAX is based (IEEE 802.16) specified a physical layer operating in the 10 to 66 GHz range. 802.16a, updated in 2004 to 802.16-2004, added specifications for the 2 to 11 GHz range. 802.16-2004 was updated by 802.16e-2005 in 2005 and uses scalable orthogonal frequency-division multiple access(Orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, whether wireless or over copper wires, used in applications such as digital television and audio broadcasting )(SOFDMA) as opposed to the fixed orthogonal frequency-division multiplexing (OFDM) version with 256 sub-carriers (of which 200 are used) in 802.16d. More advanced versions, including 802.16e, also bring multiple antenna support through MIMO (See WiMAX MIMO). This brings potential benefits in terms of coverage, self installation, power consumption, frequency re-use and bandwidth efficiency. WiMax is the most energy-efficient pre-4G technique among LTE and HSPA+.

WiMAX Terminology

WiMAX refers to interoperable implementations of the IEEE 802.16 family of wireless-networks standards ratified by the WiMAX Forum. Similarly, Wi-Fi, refers to interoperable implementations of the IEEE 802.11 Wireless LAN standards certified by the Wi-Fi Alliance. WiMAX Forum certification allows vendors to sell fixed or mobile products as WiMAX certified, thus ensuring a level of interoperability with other certified products, as long as they fit the same profile.
The original IEEE 802.16 standard (now called "Fixed WiMAX") was published in 2001. WiMAX adopted some of its technology from WiBro, a service marketed in Korea.
Mobile WiMAX (originally based on 802.16e-2005) is the revision that was deployed in many countries, and basis of future revisions such as 802.16m-2011.
WiMAX is sometimes referred to as "Wi-Fi on steroids" and can be used for a number of applications including broadband connections, cellular backhaul, hotspots, etc. It is similar to Wi-Fi but it can also permit usage at much greater distances.


WiMAX-Intro

WiMAX (Worldwide Interoperability for Microwave Access) is a wireless communications standard designed to provide 30 to 40 megabit-per-second data rates, with the 2011 update providing up to 1 Gbit/s for fixed stations. It is a part of a “fourth generation,” or 4G, of wireless-communication technology. WiMax far surpasses the 30-metre (100-foot) wireless range of a conventional Wi-Fi local area network (LAN), offering a metropolitan area network with a signal radius of about 50 km (30 miles). The name "WiMAX" was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard. The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL". WiMax offers data-transfer rates that can be superior to conventional cable-modem and DSL connections, however, the bandwidth must be shared among multiple users and thus yields lower speeds in practice.